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Wymlana Kkluczy Diffie-Hellman

Wymiana kluczy Diffiego-
Hellmana (DH) [nb 1] jest Public Channel
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Tradycyjnie, bezpieczna, szyfrowana komunikacja miedzy dwiema stronami wymagala, aby
najpierw wymienily sie kluczami za pomoca bezpiecznych $rodkéw fizycznych, takich jak
papierowe listy kluczy transportowane przez zaufanego kuriera. Metoda wymiany kluczy Diffiego-
Hellmana umozliwia dwom stronom, ktére nie maja wcze$niejszej wiedzy na temat siebie
nawzajem, wspolne ustanowienie wspolnego tajnego klucza za po$rednictwem niezabezpieczonego
kanatu. Klucz ten moze by¢ nastepnie uzywany do szyfrowania kolejnych komunikatow przy uzyciu
szyfru z kluczem symetrycznym.

Diffie-Hellman shluzy do zabezpieczania réznych uslug internetowych. Jednak badania
opublikowane w pazdzierniku 2015 r. sugeruja, ze parametry uzywane w tym czasie w wielu
aplikacjach internetowych DH nie s3 wystarczajaco silne, aby zapobiec wlamaniom ze strony

bardzo dobrze finansowanych napastnikéw, takich jak stuzby bezpieczenstwa niektorych krajow.
K]

Schemat zostat opublikowany przez Whitfielda Diffiego i Martina Hellmana w 1976 rokul2l ale w
1997 roku ujawniono, ze James H. Ellis[4}: Clifford Cocks i Malcolm J. Williamson z GCHQ,
brytyjskiej agencji wywiadu radioelektronicznego, wykazali weze$niej w 1969 rokul5) w jaki sposob
mozna osiagnaé kryptografie klucza publicznego. [6]



Chociaz sama umowa klucza Diffiego-Hellmana jest nieuwierzytelnionym protokolem uzgadniania
kluczy, stanowi podstawe dla réznych uwierzytelnionych protokoléw i jest uzywana do utajniania z
wyprzedzeniem w trybach efemerycznych Transport Layer Security (okreslanych jako EDH lub
DHE w zaleznosci od zestawu szyfrowania).

Wkroétce potem metoda ta zostala zastosowana w RSA, implementacji kryptografii klucza
publicznego wykorzystujacej algorytmy asymetryczne.

Wygasly amerykanski patent 4,200,7707 z 1977 roku opisuje algorytm, ktéry obecnie jest
wlasno$cia publiczng. Hellman, Diffie i Merkle wymieniaja jako wynalazcow.

Nazwa

W 2006 roku Hellman zasugerowal, aby algorytm nazwa¢ wymiang kluczy Diffie-Hellman-
Merkle w uznaniu wkladu Ralpha Merkle'a w wynalezienie kryptografii klucza publicznego
(Hellman, 2006), piszac:

System... od tego czasu stal sie znany jako wymiana kluczy Diffie-Hellman. Chociaz
system ten zostal po raz pierwszy opisany w artykule Diffiego i przeze mnie, jest to system
dystrybucji klucza publicznego, koncepcja opracowana przez Merkle'a, a zatem powinien
by¢ nazywany "wymiang kluczy Diffie-Hellman-Merkle", jesli nazwy maja by¢ z nim
kojarzone. Mam nadzieje, ze ta mala ambona pomoze w tym przedsiewzieciu, aby doceni¢
rowny wklad Merkle'a w wynalezienie kryptografii klucza publicznego. [8]

Opis

Ogolny zarys

Wymiana kluczy Diffiego-Hellmana ustanawia wspoélny klucz tajny miedzy dwiema stronami, ktéry
moze by¢ uzywany do tajnej komunikacji w celu wymiany danych w sieci publicznej. Analogia
ilustruje koncepcje wymiany klucza publicznego za pomoca koloréw zamiast bardzo duzych liczb:

Proces rozpoczyna sie od tego, ze dwie strony, Alice i Bob, publicznie zgadzaja sie na arbitralny
kolor poczatkowy, ktéry nie musi by¢ utrzymywany w tajemnicy. W tym przykladzie kolor jest
z6lty. Kazda osoba wybiera réwniez sekretny kolor, ktory zachowuje dla siebie — w tym przypadku
czerwony i cyjan. Kluczowa cze$cia procesu jest to, ze Alicja i Bob mieszaja swoj wlasny sekretny
kolor razem z ich wspolnym kolorem, co daje odpowiednio pomaranczowo-brazowa i
jasnoniebieska mieszanke, a nastepnie publicznie wymieniaja sie dwoma mieszanymi kolorami. Na
koniec kazdy z nich miesza kolor, ktory otrzymal od partnera, z wlasnym kolorem prywatnym.
Rezultatem jest ostateczna mieszanka koloréow (w tym przypadku zolto-brazowa), ktéra jest
identyczna z ostateczng mieszanka koloréw partnera.



If a third party listened to the exchange, they would only
know the common color (yellow) and the first mixed colors
(orange-tan and light-blue), but it would be very hard for
them to find out the final secret color (yellow-brown).
Bringing the analogy back to a real-life exchange using
large numbers rather than colors, this determination is
computationally expensive. It is impossible to compute in a
practical amount of time even for modern supercomputers.

Cryptographic explanation

The simplest and the original implementation,2! later
formalized as Finite Field Diffie-Hellman in RFC
7919,191 of the protocol uses the multiplicative group of
integers modulo p, where p is prime, and g is a primitive
root modulo p. These two values are chosen in this way to
ensure that the resulting shared secret can take on any
value from 1 to p—1. Here is an example of the protocol,
with non-secret values in blue, and secret values in red.

1. Alice and Bob publicly agree to use a modulus p = 23
and base g = 5 (which is a primitive root modulo 23).
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2. Alice chooses a secret integer a = 4, then sends Bob A = g% mod p

= A=5%mod23=4 (in this example both A and a have the same value 4, but this is usually

not the case)

3. Bob chooses a secret integer b = 3, then sends Alice B = gb mod p

= B=5%mod 23 =10

4. Alice computes s = B mod p
= s=10*mod 23 = 18

5. Bob computes s = A® mod p

= s=43mod 23 =18
6. Alice and Bob now share a secret (the number 18).

Both Alice and Bob have arrived at the same values because under mod p,

A’ mod p = ¢ mod p = ¢** mod p = B* mod p
More specifically,

(¢ mod p)’ mod p = (¢° mod p)* mod p

Only a and b are kept secret. All the other values — p, g, g% mod p, and gb mod p — are sent in the
clear. The strength of the scheme comes from the fact that g%? mod p = g?? mod p take extremely
long times to compute by any known algorithm just from the knowledge of p, g, g% mod p, and g°
mod p. Such a function that is easy to compute but hard to invert is called a one-way function.
Once Alice and Bob compute the shared secret they can use it as an encryption key, known only to
them, for sending messages across the same open communications channel.



Of course, much larger values of a, b, and p would be needed to make this example secure, since
there are only 23 possible results of n mod 23. However, if p is a prime of at least 600 digits, then
even the fastest modern computers using the fastest known algorithm cannot find a given only g, p
and g% mod p. Such a problem is called the discrete logarithm problem.[3] The computation of ¢¢
mod p is known as modular exponentiation and can be done efficiently even for large numbers.
Note that g need not be large at all, and in practice is usually a small integer (like 2, 3, ...).

Secrecy chart

The chart below depicts who knows what, again with non-secret values in blue, and secret values in
red. Here Eve is an eavesdropper — she watches what is sent between Alice and Bob, but she does
not alter the contents of their communications.

= g, public (primitive root) base, known to Alice, Bob, and Eve. g =5

= p, public (prime) modulus, known to Alice, Bob, and Eve. p = 23

= a, Alice's private key, known only to Alice. a = 6

= b, Bob's private key known only to Bob. b =15

= A, Alice's public key, known to Alice, Bob, and Eve. A = g% mod p = 8
= B, Bob's public key, known to Alice, Bob, and Eve. B = g mod p = 19

Alice Bob Eve

Known Unknown Known Unknown Known Unknown
p=23 p=23 p=23
g=5 g=5 g=>3
a==6 b b=15 a a, b
A =52 mod 23 B =5 mod 23
A=5%mod23=8 B=5"mod 23 =19
B=19 A=8 A=8B=19
s =B?mod 23 s =AP mod 23
s=19mod 23 = 2 s=8"mod 23 =2 °

Now s is the shared secret key and it is known to both Alice and Bob, but not to Eve. Note that it is
not helpful for Eve to compute AB, which equals g% * ? mod p.

Note: It should be difficult for Alice to solve for Bob's private key or for Bob to solve for Alice's
private key. If it is not difficult for Alice to solve for Bob's private key (or vice versa), then an
eavesdropper, Eve, may simply substitute her own private / public key pair, plug Bob's public key
into her private key, produce a fake shared secret key, and solve for Bob's private key (and use that
to solve for the shared secret key). Eve may attempt to choose a public / private key pair that will
make it easy for her to solve for Bob's private key.

Generalization to finite cyclic groups

Here is a more general description of the protocol: 1]

1. Alice and Bob agree on a natural number n and a generating element g in the finite cyclic
group G of order n. (This is usually done long before the rest of the protocol; g and n are



assumed to be known by all attackers.) The group G is written multiplicatively.
2. Alice picks a random natural number a with 1 < a < n, and sends the element g2 of G to Bob.
3. Bob picks a random natural number b with 1 < b < n, and sends the element g® of G to Alice.

4. Alice computes the element (g2)% = g% of G.
5. Bob computes the element (g%)? = g of G.

Both Alice and Bob are now in possession of the group element g2 = gb?, which can serve as the
shared secret key. The group G satisfies the requisite condition for secure communication as long
as there is no efficient algorithm for determining g?® given g, g%, and g°.

For example, the elliptic curve Diffie—Hellman protocol is a variant that represents an element of G
as a point on an elliptic curve instead of as an integer modulo n. Variants using hyperelliptic curves
have also been proposed. The supersingular isogeny key exchange is a Diffie—Hellman variant that
was designed to be secure against quantum computers, but it was broken in July 2022.[11]

Ephemeral and/or static keys

The used keys can either be ephemeral or static (long term) key, but could even be mixed, so called
semi-static DH. These variants have different properties and hence different use cases. An
overview over many variants and some also discussions can for example be found in NIST SP 800-
56A.112] A basic list:

1. ephemeral, ephemeral: Usually used for key agreement. Provides forward secrecy, but no
authenticity.

2. static, static: Would generate a long term shared secret. Does not provide forward secrecy, but
implicit authenticity. Since the keys are static it would for example not protect against replay-
attacks.

3. ephemeral, static: For example, used in EIGamal encryption or Integrated Encryption Scheme
(IES). If used in key agreement it could provide implicit one-sided authenticity (the ephemeral
side could verify the authenticity of the static side). No forward secrecy is provided.

It is possible to use ephemeral and static keys in one key agreement to provide more security as for
example shown in NIST SP 800-56A, but it is also possible to combine those in a single DH key
exchange, which is then called triple DH (3-DH).

Triple Diffie-Hellman (3-DH)
In 1997 a kind of triple DH was proposed by Simon Blake-Wilson, Don Johnson, Alfred Menezes in
1997,113 which was improved by C. Kudla and K. G. Paterson in 200514! and shown to be secure.

The long term secret keys of Alice and Bob are denoted by a and b respectively, with public keys A
and B, as well as the ephemeral key pairs x, X and y, Y. Then protocol is:
Triple Diffie-Hellman (3-DH) protocol
Alice (A = g%) Bob (B = ¢’)
X=4 X -
«Y | Y=¢
K =KDF(Y?, B>, Y%, X, Y, A, B) K =KDF(X¥, X*, A, X, Y, A, B)



The long term public keys need to be transferred somehow. That can be done beforehand in a
separate, trusted channel, or the public keys can be encrypted using some partial key agreement to
preserve anonymity. For more of such details as well as other improvements like side channel
protection or explicit key confirmation, as well as early messages and additional password
authentication, see e.g. US patent "Advanced modular handshake for key agreement and optional
authentication".[5]

Extended Triple Diffie-Hellman (X3DH)

X3DH was initially proposed as part of the Double Ratchet Algorithm used in the Signal Protocol.

The protocol offers forward secrecy and cryptographic deniability. It operates on an elliptic
[16]

curve.

The protocol uses five public keys. Alice has an identity key IK, and an ephemeral key EK,. Bob
has an identity key IKp, a signed prekey SPKp, and a one-time prekey OPKB.[16] Bob first publishes

his three keys to a server, which Alice downloads and verifies the signature on. Alice then initiates
the exchange to Bob.[1®] The OPK is optional.[10]

Operation with more than two parties

Diffie-Hellman key agreement is not limited to negotiating a key shared by only two participants.
Any number of users can take part in an agreement by performing iterations of the agreement
protocol and exchanging intermediate data (which does not itself need to be kept secret). For
example, Alice, Bob, and Carol could participate in a Diffie—Hellman agreement as follows, with all
operations taken to be modulo p:

. The parties agree on the algorithm parameters p and g.
. The parties generate their private keys, named a, b, and c.

. Alice computes ¢ mod p and sends it to Bob.

. Bob computes (gﬂ)b mod p = g“* mod p and sends it to Carol.

. Carol computes (2%2)¢ mod p = g% mod p and uses it as her secret.

. Bob computes gb mod p and sends it to Carol.

. Carol computes (g”)¢ mod p = g mod p and sends it to Alice.

. Alice computes (g7€)* mod p = g”“* mod p = g% mod p and uses it as her secret.
. Carol computes g° mod p and sends it to Alice.

. Alice computes (g°)* mod p = g° mod p and sends it to Bob.
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. Bob computes (g°)” mod p = g°* mod p = g%° mod p and uses it as his secret.

An eavesdropper has been able to see g2 mod p, g” mod p, g mod p, g2 mod p, g% mod p,

and gb ¢ mod p, but cannot use any combination of these to efficiently reproduce g“b “mod p.

To extend this mechanism to larger groups, two basic principles must be followed:

= Starting with an "empty" key consisting only of g, the secret is made by raising the current
value to every participant's private exponent once, in any order (the first such exponentiation
yields the participant's own public key).

= Any intermediate value (having up to N-1 exponents applied, where N is the number of
participants in the group) may be revealed publicly, but the final value (having had all N



exponents applied) constitutes the shared secret and hence must never be revealed publicly.
Thus, each user must obtain their copy of the secret by applying their own private key last
(otherwise there would be no way for the last contributor to communicate the final key to its
recipient, as that last contributor would have turned the key into the very secret the group
wished to protect).

These principles leave open various options for choosing in which order participants contribute to
keys. The simplest and most obvious solution is to arrange the N participants in a circle and have N
keys rotate around the circle, until eventually every key has been contributed to by all N
participants (ending with its owner) and each participant has contributed to N keys (ending with
their own). However, this requires that every participant perform N modular exponentiations.

By choosing a more desirable order, and relying on the fact that keys can be duplicated, it is
possible to reduce the number of modular exponentiations performed by each participant to
log,(N) + 1 using a divide-and-conquer-style approach, given here for eight participants:

1. Participants A, B, C, and D each perform one exponentiation, yielding g”de; this value is sent
to E, F, G, and H. In return, participants A, B, C, and D receive gefgh.

2. Participants A and B each perform one exponentiation, yielding gefghab, which they send to C

and D, while C and D do the same, yielding 298¢  which they send to A and B.

3. Participant A performs an exponentiation, yielding gefgh“"a

sends g?8"< t5 A C and D do similarly.

4. Participant A performs one final exponentiation, yielding the secret g

B does the same to get g¥/8/1¢dab = gabcdejgh. gqain ¢ and D do similarly.

, which it sends to B; similarly, B

efghcdba _ abcdefgh, while

5. Participants E through H simultaneously perform the same operations using g”de as their
starting point.

Once this operation has been completed all participants will possess the secret g22¢4¢/8" ut each

participant will have performed only four modular exponentiations, rather than the eight implied
by a simple circular arrangement.

Security and practical considerations

The protocol is considered secure against eavesdroppers if G and g are chosen properly. In
particular, the order of the group G must be large, particularly if the same group is used for large
amounts of traffic. The eavesdropper has to solve the Diffie—Hellman problem to obtain g@. This
is currently considered difficult for groups whose order is large enough. An efficient algorithm to
solve the discrete logarithm problem would make it easy to compute a or b and solve the Diffie—
Hellman problem, making this and many other public key cryptosystems insecure. Fields of small
characteristic may be less secure.['7]

The order of G should have a large prime factor to prevent use of the Pohlig—Hellman algorithm to
obtain a or b. For this reason, a Sophie Germain prime q is sometimes used to calculate p = 2q + 1,
called a safe prime, since the order of G is then only divisible by 2 and q. Sometimes g is chosen to
generate the order g subgroup of G, rather than G, so that the Legendre symbol of g% never reveals
the low order bit of a. A protocol using such a choice is for example IKEv2.[18]

The generator g is often a small integer such as 2. Because of the random self-reducibility of the
discrete logarithm problem a small g is equally secure as any other generator of the same group.



If Alice and Bob use random number generators whose outputs are not completely random and
can be predicted to some extent, then it is much easier to eavesdrop.

In the original description, the Diffie—Hellman exchange by itself does not provide authentication
of the communicating parties and can be vulnerable to a man-in-the-middle attack. Mallory (an
active attacker executing the man-in-the-middle attack) may establish two distinct key exchanges,
one with Alice and the other with Bob, effectively masquerading as Alice to Bob, and vice versa,
allowing her to decrypt, then re-encrypt, the messages passed between them. Note that Mallory
must be in the middle from the beginning and continuing to be so, actively decrypting and re-
encrypting messages every time Alice and Bob communicate. If she arrives after the keys have been
generated and the encrypted conversation between Alice and Bob has already begun, the attack
cannot succeed. If she is ever absent, her previous presence is then revealed to Alice and Bob. They
will know that all of their private conversations had been intercepted and decoded by someone in
the channel. In most cases it will not help them get Mallory's private key, even if she used the same
key for both exchanges.

A method to authenticate the communicating parties to each other is generally needed to prevent
this type of attack. Variants of Diffie—Hellman, such as STS protocol, may be used instead to avoid
these types of attacks.

Denial-of-service attack

A CVE released in 2021 (CVE-2002-20001 (https://nvd.nist.gov/vuln/detail/CVE-2002-20001))
disclosed a denial-of-service attack (DoS) against the protocol variants use ephemeral keys, called
D(HE)at attack.l'9] The attack exploits that the Diffie-Hellman key exchange allows attackers to
send arbitrary numbers that are actually not public keys, triggering expensive modular
exponentiation calculations on the victim's side. Another CVE released in 2022 (CVE-2022-40735
(https://nvd.nist.gov/vuln/detail/CVE-2022-40735)) disclosed that the Diffie-Hellman key
exchange implementations may use long private exponents that arguably make modular
exponentiation calculations unnecessarily expensive.l22] An attacker can exploit both
vulnerabilities together.

Practical attacks on Internet traffic

The number field sieve algorithm, which is generally the most effective in solving the discrete
logarithm problem, consists of four computational steps. The first three steps only depend on the
order of the group G, not on the specific number whose finite log is desired.[22] It turns out that
much Internet traffic uses one of a handful of groups that are of order 1024 bits or less.3] By
precomputing the first three steps of the number field sieve for the most common groups, an
attacker need only carry out the last step, which is much less computationally expensive than the
first three steps, to obtain a specific logarithm. The Logjam attack used this vulnerability to
compromise a variety of Internet services that allowed the use of groups whose order was a 512-bit
prime number, so called export grade. The authors needed several thousand CPU cores for a week
to precompute data for a single 512-bit prime. Once that was done, individual logarithms could be
solved in about a minute using two 18-core Intel Xeon CPUs.[3!

As estimated by the authors behind the Logjam attack, the much more difficult precomputation
needed to solve the discrete log problem for a 1024-bit prime would cost on the order of $100
million, well within the budget of a large national intelligence agency such as the U.S. National



Security Agency (NSA). The Logjam authors speculate that precomputation against widely reused
1024-bit DH primes is behind claims in leaked NSA documents that NSA is able to break much of
current cryptography.[3]

To avoid these vulnerabilities, the Logjam authors recommend use of elliptic curve cryptography,
for which no similar attack is known. Failing that, they recommend that the order, p, of the Diffie—
Hellman group should be at least 2048 bits. They estimate that the pre-computation required for a
2048-bit prime is 109 times more difficult than for 1024-bit primes.[3]

Other uses

Encryption

Public key encryption schemes based on the Diffie—-Hellman key exchange have been proposed.
The first such scheme is the ElGamal encryption. A more modern variant is the Integrated
Encryption Scheme.

Forward secrecy

Protocols that achieve forward secrecy generate new key pairs for each session and discard them at
the end of the session. The Diffie-Hellman key exchange is a frequent choice for such protocols,
because of its fast key generation.

Password-authenticated key agreement

When Alice and Bob share a password, they may use a password-authenticated key agreement (PK)
form of Diffie-Hellman to prevent man-in-the-middle attacks. One simple scheme is to compare
the hash of s concatenated with the password calculated independently on both ends of channel. A
feature of these schemes is that an attacker can only test one specific password on each iteration
with the other party, and so the system provides good security with relatively weak passwords. This
approach is described in ITU-T Recommendation X.1035, which is used by the G.hn home
networking standard.

An example of such a protocol is the Secure Remote Password protocol.

Public key

It is also possible to use Diffie—Hellman as part of a public key infrastructure, allowing Bob to
encrypt a message so that only Alice will be able to decrypt it, with no prior communication
between them other than Bob having trusted knowledge of Alice's public key. Alice's public key is
(9% mod p, g, p). To send her a message, Bob chooses a random b and then sends Alice gb mod p

(unencrypted) together with the message encrypted with symmetric key (ga)b mod p. Only Alice
can determine the symmetric key and hence decrypt the message because only she has a (the
private key). A pre-shared public key also prevents man-in-the-middle attacks.

In practice, Diffie—Hellman is not used in this way, with RSA being the dominant public key
algorithm. This is largely for historical and commercial reasons, namely that RSA Security created
a certificate authority for key signing that became Verisign. Diffie-Hellman, as elaborated above,



cannot directly be used to sign certificates. However, the ElGamal and DSA signature algorithms
are mathematically related to it, as well as MQV, STS and the IKE component of the IPsec protocol
suite for securing Internet Protocol communications.

See also

Elliptic-curve Diffie—Hellman key exchange
Supersingular isogeny key exchange
Forward secrecy

Diffie—Hellman problem

Modular exponentiation

Denial-of-service attack

Post-Quantum Extended Diffie-Hellman

Notes

1.

Synonyms of Diffie—Hellman key exchange include:

= Diffie—Hellman—Merkle key exchange
= Diffie—Hellman key agreement

» Diffie—Hellman key establishment

= Diffie—Hellman key negotiation

= Exponential key exchange

= Diffie—Hellman protocol

= Diffie-Hellman handshake
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