# Ćwiczenie Metody ataków sieciowych

Cel ogólny lekcji: Poznanie metod ataków sieciowych oraz nauka konfiguracji maszyn serwerowych i klientów.

Cele szczegółowe:

- 1. Zapoznanie się z atakiem sieciowym z użyciem metasploita na Kali Linux oraz przejęcie domeny Active Directory za pomocą delegacji Kerberos.
- 2. Wykonanie analizy aktywnych i nasłuchujących portów oraz nauka konfiguracji serwera z Windows 2019 z kontrolerem domeny i klienta z Windows 10.
- 3. Nauka konfiguracji karty sieciowej, ustawienia adresu IP, bramy i serwera DNS, a także instalacja usług IIS na maszynie klienta z Windows 10.
- 4. Konfiguracja maszyny serwera z Windows 2019 z kontrolerem domeny poprzez instalację roli RDS, ustawienie połączenia zdalnego, start usługi SSH i utworzenie reguł zaporowych.

Przed przystąpieniem do ćwiczenia przywróć pierwszy punkt kontrolny.

- 1. Wykonaj analizę ataku sieciowego, zapisz w zeszycie jakie informacje uzyskałeś których nie znałeś. Jakie to daje zagrożenia i możliwości (**teleinformatycy wykonują w domu**).
- a. Atak na Windows 10 z metasploita na Kali Linux opisany w tym ćwiczeniu.
- b. Przejęcie domeny Active Directory za pomocą delegacji Kerberos opisany w tym artykule.
- 2. Wykonaj znajdowanie i analizę aktywnych i nasłuchujących portów.

## Przygotuj maszynę serwera z Windows 2019 z kontrolerem domeny

Karta sieciowa podłączona do przełącznika wirtualnego (Default Switch)

system serwera:
Wpisz i sprawdź nazwę interfejsu i zastosuj go w poleceniach poniżej netsh interface show interface
netsh interface ip set address "Ethernet 3" dhcp
Get-WindowsCapability -Online | Where-Object name -like 'OpenSSH\*'
Add-WindowsCapability -Online -Name OpenSSH.Server~~~0.0.1.0
Get-WindowsCapability -Online | Where-Object name -like 'OpenSSH\*'
W konfiguracji karta sieciowa podłączona do przełącznika prywatnego (sieć wewnętrzna)
Adres ip 192.167.0.1/24
netsh interface ip set address name="Ethernet 3" static 192.167.0.1 255.255.255.0"

## Przygotuj maszynę klienta z Windows 10

• ustawienie maszyny wirtualnej klienta Windows 10

Karta sieciowa pdłączona do przełącznika prywatnego (seć wewnętrzna)

• system klienta Windows 10:

Na kliencie Windows 10 uruchom PowerShell jako administrator i wpisz kolejno w jednej linii:

Adres ip 192.167.0.111/24 netsh interface ip set address "Ethernet 2" static 192.167.0.111 255.255.255.0 192.167.0.1 1 Brama i serwer DNS: 192.167.0.1 netsh interface ipv4 add dnsserver "Ethernet 2" address=192.167.0.1 index=1

Instalacja usług IIS Enable-WindowsOptionalFeature -Online -FeatureName IIS-WebServerRole, IIS-WebServer, IIS-CommonHttpFeatures, IIS-ManagementConsole, IIS-HttpErrors, IIS-HttpRedirect, IIS-WindowsAuthentication, IIS-StaticContent, IIS-DefaultDocument, IIS-HttpCompressionStatic, IIS-DirectoryBrowsing

Sprawdź statusu uruchomionego serwera WWW: Get-Service W3SVC

Wykonaj restart, pozostaw uruchomione usługi IIS:

#### <mark>iisreset</mark>

Usługi internetowe zostały pomyślnie uruchomione ponownie PS C:\WINDOWS\system32>

#### Przygotuj maszynę serwera z Windows 2019 z kontrolerem domeny

Na serwerze Windows dc 2019 otwórz PowerShell jako administrator i wpisz kolejno:

Install-WindowsFeature Remote-Desktop-Services i naciśnij klawisz Enter, aby zainstalować rolę RDS.

Enable-NetFirewallRule -DisplayGroup "Pulpit zdalny" - zmiany w oknie pozwalania aplikacjom na komunikowanie się z systemem Windows 10 przez Zaporę.

Set-ItemProperty -Path 'HKLM:\System\CurrentControlSet\Control\Terminal Server' -name "fDenyTSConnections" -Value 0 - zezwalaj na połączenie z komputerów z dowolną wersją Pulpitu zdalnego.

Set-Service -Name sshd -StartupType 'Automatic'

Start-Service -Name 'sshd'

Get-NetFirewallRule -Name '\*ssh\*' | Format-Table -AutoSize

New-NetFirewallRule -Name sshd -DisplayName 'OpenSSH Server (sshd)' -Enabled True -Direction Inbound -Protocol TCP -Action Allow -LocalPort 22 W Windows 2019 za pomocą przeglądarki internetowej otwórz stronę pod adresem 192.167.0.111 Co pewien czas odnawiaj połączenie.

Na kliencie Windows 10 uruchom ssh <u>administrator@192.167.0.1</u> > yes podaj hasło zaq1@WSX

## Właściwe zadanie:

Zapisz w zeszycie jakie informacje uzyskałeś których nie znałeś. Jakie to daje możliwości.

a. Używanie Netstat do znajdowania aktywnych i nasłuchujących portów

Netstat to narzędzie wiersza poleceń do sprawdzania połączeń sieci lokalnej. Sprawdźmy, jak go używać do znajdowania słuchanych i nawiązywanych połączeń sieciowych.

01. W Windows 2019 wykonałeś polecenie netstat -fn

| C:\Users | \Administrator> <mark>netst</mark> a | at -fn                         |             |
|----------|--------------------------------------|--------------------------------|-------------|
| Active C | onnections                           |                                |             |
|          |                                      |                                |             |
| Proto    | Local Address                        | Foreign Address                | State       |
| TCP      | 192.167.0.1:22                       | 192.167.0.111:59661            | ESTABLISHED |
| TCP      | 192.167.0.1:389                      | 192.167.0.1:49867              | ESTABLISHED |
| TCP      | 192.167.0.1:49867                    | 192.167.0.1:389                | ESTABLISHED |
| TCP      | 192.167.0.1:49900                    | 192.167.0. <mark>111:80</mark> | ESTABLISHED |
| TCP      | [::1]:389                            | [::1]:49694                    | ESTABLISHED |
| TCP      | [::1]:389                            | [::1]:49695                    | ESTABLISHED |
| TCP      | [::1]:389                            | [::1]:49722                    | ESTABLISHED |
| TCP      | [::1]:49694                          | [::1]:389                      | ESTABLISHED |
| TCP      | [::1]:49695                          | [::1]:389                      | ESTABLISHED |
| TCP      | [::1]:49722                          | [::1]:389                      | ESTABLISHED |
| TCP      | [::1]:49896                          | [::1]:47001                    | TIME_WAIT   |

02. W Windows wykonałeś polecenie netstat -a -n -b | more

| C:\User: | s\Administrator≻ <mark>netstat</mark> | -anb  more          |             |
|----------|---------------------------------------|---------------------|-------------|
| C:\User  | s∖Administrator≻ <mark>netstat</mark> | -a -n -b   more     |             |
| [dns.ex  | el                                    |                     |             |
| TCP      | 192.167.0.1:22                        | 192.167.0.111:59661 | ESTABLISHED |
| [sshd.e  | xe]                                   |                     |             |
| TCP      | 192.167.0.1:53                        | 0.0.0.0:0           | LISTENING   |
| [dns.ex  | e]                                    |                     |             |
| TCP      | 192.167.0.1:139                       | 0.0.0.0:0           | LISTENING   |
| Can not  | obtain ownership infor                | mation              |             |
| TCP      | 192.167.0.1:389                       | 192.167.0.1:49867   | ESTABLISHED |
| [lsass.  | exe]                                  |                     |             |
| TCP      | 192.167.0.1:49867                     | 192.167.0.1:389     | ESTABLISHED |
| [Server  | Manager.exe]                          |                     |             |
| TCP      | 192.167.0.1:49916                     | 192.167.0.111:80    | ESTABLISHED |
| [IEXPLO  | RE.EXE]                               |                     |             |
| TCP      | [::]:22                               | [::]:0              | LISTENING   |
| [sshd.e  | xe]                                   |                     |             |
| TCP      | [::]:88                               | [::]:0              | LISTENING   |

Użycie parametru -a nakazuje netstat zwrócić nasłuchiwanie i nawiązane połączenia.

Użycie parametru -an nakazuje netstat zwrócić wszystkie nazwy w danych wyjściowych zamienione na adresy IP.

Użycie parametru -b nakazuje netstat poznać procesy Windows, które nasłuchują lub mają otwarte połączenia.

b. Używanie PowerShell do znajdowania aktywnych i nasłuchujących portów

Używanie PowerShell daje dużo większą kontrolę, aby zobaczyć tylko to, co chcesz, zamiast przewijania długich list danych wyjściowych. Polecenie cmdlet Get-NetTCPConnection jest znacznie bardziej szczegółowe niż netstat na temat tego, co chcesz zobaczyć.

01. Wpisz Get-NetTcpConnection. Zobaczysz dane wyjściowe podobne do tych, które podał netstat. Zamiast tylko dużego ciągu danych wyjściowych, Get-NetTcpConnection zwraca listę obiektów PowerShell.

Możesz teraz zobaczyć te same ogólne informacje, które do tej pory dostarczył netstat; domyślnie masz informację o OwningProcess ( -b w netstat) i w polu AppliedSetting, które odnosi się do profilu sieciowego, którego częścią jest połączenie.

02. Potokuj dane wyjściowe, aby Select-Object pokazał wszystkie właściwości. Zobaczysz, że PowerShell zwraca o wiele więcej informacji niż zrobił to netstat.

Get-NetTCPConnection | Select-Object -Property \*

| PS C:\Users\Administra | tor> | <pre>Get-NetTCPConnection   Select-Object -Property *</pre> |
|------------------------|------|-------------------------------------------------------------|
| State                  |      | Bound                                                       |
| AppliedSetting         |      |                                                             |
| OffloadState           |      | InHost                                                      |
| Caption                |      |                                                             |
| Description            |      |                                                             |
| ElementName            |      |                                                             |
| InstanceID             |      | ::++49776++::++0                                            |
| CommunicationStatus    |      |                                                             |
| DetailedStatus         |      |                                                             |
| No. 145 Shots          |      |                                                             |

03. Zawęź dane wyjściowe do portów nasłuchujących.

Get-NetTCPConnection -State Listen



04. Znajdź nazwy procesów dla pól OwningProcess. Aby to zrobić, uruchom polecenie cmdlet Get-Process i podaj identyfikator procesu, który zidentyfikowałeś, jak pokazano poniżej.

Get-Process -Id 804

| PS C:\Users\Administrator> Get-Process -Id 804 |        |       |       |        |     |    |             |
|------------------------------------------------|--------|-------|-------|--------|-----|----|-------------|
| Handles                                        | NPM(K) | PM(K) | WS(K) | CPU(s) | Id  | SI | ProcessName |
|                                                |        |       |       |        |     |    |             |
| 832                                            | 27     | 58928 | 81704 | 13,00  | 804 | 0  | svchost     |

Jeśli chcesz utworzyć inną właściwość dla nazwy procesu, możesz opcjonalnie użyć pola obliczeniowego Select-Object.

Get-NetTCPConnection | Select-Object -Property \*,@{'Name' = 'ProcessName';'Expression'={(Get-Process -Id \$\_.OwningProcess).Name}}

05. Zawęź stany do nieco większej liczby, wyszukując Listening i Established definiując State wartość parametru jako listę rozdzielaną przecinkami.

Get-NetTCPConnection -State Listen, Established

06. Ogranicz połączenia do portu, do którego jest podłączone za pomocą parametru RemotePort.

Get-NetTCPConnection -RemotePort 80

| PS C:\Users\Administrator> G | et-NetTCPConnectio | n -RemotePort 80 |            |             |                |
|------------------------------|--------------------|------------------|------------|-------------|----------------|
| LocalAddress                 | LocalPort          | RemoteAddress    | RemotePort | State       | AppliedSetting |
|                              |                    |                  |            |             |                |
| 192.167.0.1                  | 51565              | 192.167.0.111    | 80         | Established | Datacenter     |

07. Ogranicz połączenia do portu, do którego jest podłączone za pomocą parametru LocalPort.

Get-NetTCPConnection -LocalPort 3389

| PS C:\Users\Administrato | r> Get-NetTCPConnectio | on -LocalPort 3389 |            |        |                |               |
|--------------------------|------------------------|--------------------|------------|--------|----------------|---------------|
| LocalAddress             | LocalPort              | RemoteAddress      | RemotePort | State  | AppliedSetting | OwningProcess |
|                          |                        |                    |            |        |                |               |
| ::                       | 3389                   | :::                | 0          | Listen |                | 884           |
| 0.0.0.0                  | 3389                   | 0.0.0              | 8          | Listen |                | 804           |

## Wniosek

Widziałeś, jak narzędzie Netstat i polecenie programu PowerShell cmdlet Get-NetTCPConnection pomagają znaleźć lokalne połączenia sieciowe.

## <mark>zgłoszenie</mark>

Przywróć pierwszy punkt kontrolny

Podsumowanie:

Po wykonaniu wszystkich czynności z powyższej instrukcji przeczytaj ponownie z zrozumieniem cel ogólny i cele szczegółowe, które znajdują się na pierwszej stronie instrukcji. Jeżeli one zostały niezrealizowane to powtarzaj wykonie tej instrukcji w szkole lub/i w domu do momentu zrealizowania.